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Surface Plasmon Resonance 

Biosensors I

2



Content
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• Design of a flow-cell chamber in affinity biosensors.

• Principle of SPR biosensors.

• Propagating surface plasmons (PSPs) on metallic films 

- optical configurations for the coupling (ATR, grating). 

• Localized surface plasmons on metallic nanostructures 

attached to solid substrates.

• Angular and wavelength interrogation of SPR

• Surface mass density measurements with SPR 

biosensors



Microfluidic Chamber in Affinity 

Biosensors
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Example of a Study on the Flow-cell 

Geometry Impact on Affinity Binding 

Kinetics
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https://pubs.rsc.org/en/Content/ArticleLanding/2013/LC/c2lc41184a#!divAbstract

https://pubs.rsc.org/en/Content/ArticleLanding/2013/LC/c2lc41184a#!divAbstract


Flow-Cell Geometry
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Example of a typical flow 

cell geometry with a zone 

where optical readout is 

performed.



Flow-rate Dependence of a Flux of 

Biomolecules to the Surface
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The binding events are depending on the location with the flow 

chamber and depends on the geometry parameters.
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The binding events are depending on the location with the flow 

chamber and depends on the geometry parameters.

Height Dependence of a Flux of 

Biomolecules to the Surface



Diffusion-Limited Binding Kinetics
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H. Park, A. Germini, S. Sforza, R. 

Corradini, R. Marchelli, and Knoll W. 

,BioInterphases 1, 113 2006.



Principle of SPR  Biosensors
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Probing of Affinity Binding Events
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The capture of target analyte on the sensor surface forms an additional layer 

with increased refractive index δnd which is probed by surface plasmon 

resonance:



Metallic Waveguides – Propagating 

Surface Plasmons (PSP)
Surface plasmons (SPs) or also called surface plasmon polaritons (SPPs) are 

waves originating from coupled oscillations of electron plasma density and 

associated electromagnetic field on a metal – dielectric interface.

They travel along single interface which serves a waveguide. 
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Propagation constant β

can be analytically 

expressed as:

SPs allows for tight confinement of electromagnetic field at the interface. 

For visible near infrared wavelength typically gold and silver is used where 

the Re{nm
2}<0.

Majority of the field is probing the dielectric nd.
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Coupling to PSPs
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Phase-matching 

condition:

Resonant effect, coupling occurs only for certain combinations of λ and θ, 

where the phase-matching is fulfilled. 
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Grating Coupling to PSPs

Phase-matching can be investigated by using dispersion of the modes, 

manifested as a cross-section for certain diffraction order p.
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On metallic diffraction gratings, the coupling strength to PSPs is controlled 

by the modulation depth.
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Prism Coupling to PSPs

Phase-matching by using prism is enabled by increasing the momentum 

of incident optical wave by using high refractive index glass np.
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Propagating Surface Plasmons (PSP)

For the ATR prism-based excitation of PSPs, the strength of the coupling 

is controlled by the thickness of the metal layer dm.
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‘Mainz’ Design of 

SPR Biosensor

Example of an optical setup 

of angular modulation of 

SPR with a micro-fluidic unit

for monitoring of affinity 

binding
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Refractive Index Sensitivity – Angular 

Interrogation

SPR changes with  both changes 

in the bulk nd and surface 

refractive index changes.
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‘Mainz’ Design of SPR – Typical 

Characteristics
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Localized Surface Plasmons (LSPs)
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Localized surface plasmons (LSPs) are 

associated with electron plasma density 

oscillations on metallic nanoparticles. 

Provides unique optical / plasmonic 

characteristics.
( ) ( )2Re{ } 2 0m dnn  + =

Localized surface plasmon resonance 

is associated with strong:

Absorption

Scattering

Field confinement and   

enhancement

Resonant effect, e.g. for 

spherical metallic nanoparticle 

with d<<λ the resonance 

wavelength λLSPR obeys:

nm

nd
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Localized Surface Plasmon 

Resonance (LSPs)

Resonant effect, e.g. for 

spherical metallic nanoparticle 

with D<<λ the resonance 

wavelength λLSPR.

Confined electromagnetic 

field intensity, Lp ~ D.

Zeptoliter (10-21) volume



23

LSPR transmission

Tracking of LSPR 

wavelength  λLSPR

Example of first implementation of LSPR for analysis of 

biomarkers.

A.J. Haes et al,, J. Am. Chem. Soc., 2005, 127 (7), pp 2264–2271

DOI: 10.1021/ja044087q

Implementations of LSPR 

Biosensor
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Refractive Index Sensitivity –

Wavelength Interrogation

Sb=δλSPR/δns=2000 nm/RIU Sb=190 nm/RIU 

A. Bozdogan, S. Hageneder, J. Dostalek, Plasmonic biosensors relying on biomolecular conformational changes: Case of odorant binding

proteins, Methods in Enzymology, Elsevier (2020), ISSN 0076-6879.

https://www.sciencedirect.com/science/journal/00766879
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Probing Depth – LSP and PSP

Lp/2=93 nm
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A. Bozdogan, S. Hageneder, J. Dostalek, Plasmonic biosensors relying on biomolecular conformational changes: Case of odorant binding

proteins, Methods in Enzymology, Elsevier (2020), ISSN 0076-6879.

https://www.sciencedirect.com/science/journal/00766879


SPR and LSPR Comparison
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SPR LSPR

Complexity of instrument high simple          

Refractive index resolution 10-7 an order of 

mag. lower

Probing depth > 100 nm >10 nm

Parallelized detection propagation       individual  NP 

length  > 1 μm possible

Kvasnicka et al, BIOINTERPHASES Volume: 3 Issue: 3 Pages: FD4-FD11 DOI: 10.1116/1.2994687. Stewart et al, Chem. Rev. 

2008, 108, 494−521. Homola, Chemical Reviews, 108, 462-493 (2008).

Both SPR and LSPR biosensors were applied for the analysis of chemical and 

biological analytes and range of instruments become commercially available



Interrogation of SPR Changes
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Intensity Modulation
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Angle of incidence θ and wavelength λ are fixed at the edge of the SPR dip, 

where slope δR/δθ is highest.

Simple implementation that allows for fast measurements of SPR changes

Drawback is the small dynamic range, where δR shifts linearly with 

the measured  changes (represented as a thickness of biolayer df).

Typically the accuracy of the measurement is low (resolution 10-5 RIU).



Angular Modulation of SPR
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Measuring the whole reflectivity spectrum R(θ) by using a converging 

monochromatic optical beam (fixed λ) that is projected to a CCD detector (no 

movable parts). Introduced in early 1990ties by a Swedish company Farmacia

Bioacore.

Typically not versatile and build for specific refractive index range.

Fast measurement of whole reflectivity spectrum allows for tracking of 

refractive index changes with high accuracy (resolution 10-7 RIU).

Liedberg, B., C. Nylander and I. Lundstrom Biosensing with surface plasmon 
resonance - how it all started. Biosens.Bioelectron. 10: i-ix; (1995)



Wavelength Modulation of SPR
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https://doi.org/10.1016/j.snb.2008.09.006

Measuring wavelength reflectivity spectrum R(λ) for a fixed angle of incidence 

θ. The spectrum is analysed by a spectrometer that changes in resonant 

wavelength are tracked in time.

No movable parts and high accuracy (10-7 RIU). 

The sensitivity is nonlinearly changing with wavelength λ.

J. Homola, J. Dostalek, S. Chen, A. Rasooly, S. 

Jiang, S. S. Yee: Spectral Surface Plasmon 

Resonance Biosensor for Detection of

Staphylococcal Enterotoxin B (SEB) in Milk , 

Journal of Microbiology, 75, (2002) 61-69.

https://doi.org/10.1016/j.snb.2008.09.006


Tracking of SPR Changes
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Tracking of very small spectral shifts is 

possible (δλSPR<10-2 nm).

Various approaches based on fitting of 

SPR reflectivity curves with analytical 

function or centroid method were used in 

SPR biosensors.
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Tracking of SPR Changes
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Garet G Nenninger et al 2002 Meas. Sci. Technol. 13 2038

Parameters of the tracking routine needs to be optimized in order to minimize 

the noise of the baseline signal λcen.

Nico’s Labview software to track SPR wavelength changes by 

polynomial fitting or centroid.



Key Characteristics
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Calibration with bulk refractive 

index change δnb.
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Calibration with biolayer 

growth  leading to surface 

mass density change ΔΓ.



Key Characteristics
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Refractive index resolution (10-7) and minimum detectable surface 

mass density change (pg/mm2) can be used as universal 

characteristics of SPR biosensor instruments.

/b res dS nd d=
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Surface Mass Density Measurements
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Observation of Thin 

Biomolecular Films
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Layer-by-layer building up of SA/cAb. SPR IL6 sandwich assay.

• SPR response (δθres) 

proportional to mass adhered to 

the surface .



Observation of Thin 

Biomolecular Films
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SPR signal change can be converted to the surface mass density of bound 

biomolecules . Useful tool for the investigation of surface coverage of 

proteins, binding capacity, developing assays….

Fitting of SPR spectra allows determining of refractive index nf and / or 

thickness df of thin films (e.g., implemented in a software Winspall).
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For most polymer materials holds ∂nf/∂c ~ 0.2 mm3 mg-1 and in aqueous

samples nd=1.33. For instance a full packed IgG monolayer exhibits  ~ 4 

ng/mm2, IgG hydrodynamic radius Rh ~ 5 nm.

dfnf

nd



‘Mainz’ SPR Biosensors
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Fitting of reflectivity curves allows to determine the thickness df and 

refractive index nf in order to determine the surface mass density Γ.


