

Advanced Technologies in Biological Research: Optical Spectroscopy and Biosensors

Jakub Dostalek

AIT - Austrian Institute of Technology GmbH Biosensor Technologies Unit Konrad-Lorenz-Strasse 24 | 3430 Tulln | Austria T +43(0) 664 2351773

jakub.dostalek@ait.ac.at | http://www.ait.ac.at | http://www.jakubdostalek.cz

Tissue Engineering

Aims at " ...tissue growth and applying this to produce functional replacement tissue for clinical use..."

> * Langer R, Vacanti JP (1993) *Science* **260** (5110): 920–6

Optical techniques provides tools for imaging cell cultures, individual cells and were deployed for the investigation / detection of biomolecules and observation their interactions at surfaces, biointerfaces, inside cells,...

M P Lutolf & J A Hubbell, *Nature Biotechnology* **23**, 47 - 55 (2005)

Optics for Imaging / Spectroscopy in Tissue Engineering

Optical techniques are at the heart of the majority of tools enabling observation of tissues, cells, and biomolecules. Typically nondestructive and rather sensitive.

Optical tomography: optical coherence tomography (OCT)

Microscopy: phase contrast, fluorescence, fluorescence resonant energy transfer (FRET), super-resolution microscopy (stimulated emission depletion - STED, photo activated localization microscopy - PALMS, STORM...)

Spectroscopy: IR Absorption, SERS, Surface plasmon resonance (SPR)...

Outline

A. Introduction to light propagation and confinement: ray, wave, and electromagnetic optics. Total internal reflection, guided wave optics, surface plasmon resonance.

B. Optical micro- and nano-structures: Top down and bottom up fabrications, electron beam lithography, colloidal lithography, nano-imprint lithography.

C. Optical spectroscopy: absorption, fluorescence, FRET, Raman and IR spectroscopy.

D. Super-resolution microscopy: Diffraction limit and approaches to break it, STED, PALMS, STORM.

E. Optical tweezers: manipulation with cells and force measurements.

F. Biosensors: Transducers, key performance characteristics, application areas including medical diagnostics, and drug development.

G. Surface plasmon resonance (SPR) biosensors.

H. Reaction kinetics and evaluation of affinity binding constants for molecular interaction analysis (BIA).

I. Single molecule interaction analysis by using fluorescence, FRET and LSPR monitoring.

J. Optical spectroscopy-based biosensors. Colorimetric, fluorescence, Raman.

A. PROPAGATION AND CONFINEMENT OF LIGHT

Size of an

Optics / Photonics - Light Propagation / Confinement

Propagation of light and its interaction with matter can be treated at different levels (accuracy):

Less accurate (and simpler to use)				object ∆x
	Ray optics	-	refraction, reflection	Δx>>λ
	Wave optics	-	wavelength λ , phase, interference.	·· Δx<~λ
	Electromagnetic optics	-	polarization, surface waves	
	Quantum optics	_	quantized energies (photons), lase	rs

More general (and complicated...)

Ray Optics

Refractive index *n* describes optical density of matter in which a light beam - ray - propagates. At a plane interface between $n_1 > n_2$, reflection and refraction occurs.

Refracted beam propagates to n₂ medium

Beam propagates along the interface

Beam undergoes total internal reflection - TIR

Wave Optics

Wave equation

$$\left(\frac{d^2}{dx^2} - \frac{1}{v^2}\frac{d^2}{dt^2}\right)u(x,t) = 0$$

Plane wave (scalar) $u(x,t) = A\sin(k_0nx - \omega t)$

 $k_0 = \omega/c$ propagation constant in vacuum ω angular frequencyv=c/nvelocity of light $\lambda=2\pi c/\omega$ wavelength in vacuum

8

Total Internal Reflection - TIR

At angles $\theta > \theta_c$ field amplitude exponentially decays to medium n_2

$$u(x) = u_0 e^{-x/L_p}$$

The field probes limited penetration depth from the interface:

$$L_p = \frac{\lambda}{4\pi\sqrt{n_1^2\sin^2\left(\theta\right) - n_2^2}}$$

Slab Optical Waveguide

Ray optics point of view:

Light propagation is confined by TIR at opposite interfaces

Wave optics point of view:

Only discrete modes with certain propagation constants β can travel through the waveguide

Examples of Dielectric Optical Waveguide

Cladding

Historical Tyndall experiment at 1870.

Åa-

Optical fibers

High-order Modes (faster)

Optical circuits

Examples of Dielectric Optical Waveguide

Optical fiber bundles used for imaging of remote places (right) and catheters (down).

Figure 7-4 Fiber optic endoscopy

Examples of Dielectric Optical Waveguide

Optical fibers allow for design of miniature sensors relying on probing by <u>evanescent field:</u>

Hodgkinson et al, 2013 Meas. Sci. Technol. 24 012004

Oxygen Pressure Fluorescence, FRET

13

Metallic Waveguides – Surface Plasmons (SP)

<u>Surface plasmons</u> (SPs) or also called surface plasmon polaritons (SPPs) are waves originating from coupled <u>oscillations of electron plasma density</u> and associated electromagnetic field on a metal – dielectric interface.

They travel along <u>single interface</u> which serves a waveguide.

Propagation constant β can be analytically expressed as:

- SPs allows for tight confinement of electromagnetic field at the interface.
- For visible near infrared wavelength typically gold and silver is used where the $\text{Re}\{n_m^2\}<0$.
- Algority of the field is probing the dielectric $n_{\rm d}$.

Localized Surface Plasmons (LSPs)

Localized surface plasmons (LSPs) are associated with electron plasma density oscillations on metallic nanoparticles. Provides unique optical / plasmonic characteristics.

Resonant effect, e.g. for spherical metallic nanoparticle with $d << \lambda$ the resonance wavelength λ_{LSPR} obeys:

 $\operatorname{Re}\left\{n_{m}^{2}\left(\lambda\right)\right\}+2n_{d}\left(\lambda\right)=0$

Localized surface plasmon resonance is associated with strong:

- Absorption
- Scattering
- Field confinement and enhancement

Localized Surface Plasmons (LSPs)

Synthesized metallic nanorods - tuning of λ_{LSPR} by changing the aspect ratio.

Watt, F.; Bettiol, A. A.; Van Kan, J. A.; Teo, E. J.; Breese, M. B. H. *Int. J. Nanosci.* 2005, 4, 269.

Spectroscopy of Surface Plasmons

- Changes in the refractive index or geometry of metallic nanoparticles alter λ_{LSPR}
- These variations can be probed by, e.g., transmission spectrometry

Localized Surface Plasmons (LSPs)

Strong absorption, scattering and field enhancement $|E/E_0|^2$ occurs at resonant wavelength λ_{LSPR} which can be tuned by: λ_{LSPR}

- Choice of metal (e.g., silver, gold)
- Refractive index change of a dielectric
- Shape and inter-NP interaction

Kumar et al., Nature Nanotechnology (2012) DOI: 10.1038/NNANO.2012.128

Example of LSPs

Blend of glass with metallic nanoparticles - used for centuries in stained glass.

St. Vitus cathedral, Prague

Structures from previous slide employed for printing with diffraction limit accuracy (10⁵ dpi).

Kumar et al., Nature Nanotechnology (2012) DOI: 10.1038/NNANO.2012.128

Example of Plasmonics in Biotechnologies

В А avidin-biotin spacer 2 caspase-3 cleavage site spacer 1 500 nm D С 633nm 200 ntensity (a.u.) 100 $\Delta \lambda =$ 75 nm 400 500 600 700 8**0**0 wavelength (nm)

 $\frac{FRET}{r} - fluorescence resonant}$ energy transfer. Used for interaction analysis of biomolecules at distances r < 10 nm. <u>Plasmonic ruler</u> – a concept relying on coupling of LSPs enables monitoring of interactions at larger distances r > 10 nm

Alivisatos lab: 10.1073/pnas.0907367106

IAN INSTITUTE

Example of Plasmonics in Biotechnologies - Nanoflare

<u>FRET</u> – metallic NP serves as a donor and quenches the fluorescence

<u>Spherical DNA</u> – allows for simple cellular uptake

<u>Aptamer</u> – oligonucleotide designed for specific capture of molecular analytes (ATP in this case) Aptamer Nano-Flares Control

Example of Plasmonics in Biotechnologies – Reversible Live-Cell Measurements

Concept pursued for real-time detection of growth factors, proteases... Investigation of cellular microenvironment, concentration gradients.

Alivisatos lab: http://pubs.acs.org/doi/abs/10.1021/acs.nanolett.5b01161

Example of Plasmonics in Biotechnologies – Reversible Live-Cell Measurements

Demonstrated for detection of metalloproteinase (MMP3) secreted by epithelial cells.

Example of Plasmonics in Biotechnologies – Biomolecular Interaction Analysis

A - Summary

- Light propagation, refraction and reflection of light beams, total internal reflection - TIR
- Dielectric waveguides optical fibers.
- Metallic waveguides propagating surface plasmons
- Metallic nanoparticles localized surface plasmons LSPs, optical properties of metallic nanoparticles associated with LSPs.
- Confinement and enhancement of light intensity, probing of molecular binding events.
- Metallic surface quenches fluorescence.

B. PREPARATION OF OPTICAL STRUCTURES

Preparation of Optical Nano/Micro - Structures

"Top down" and "bottom up" approaches can be used for preparation of micro/nano structures.

A subtractive process from bulk starting materials

David (Michelangelo), Florence An additive process that starts with precursor atoms or molecules

Mosaic of Justinian and Retinue at Apse Entry, San Vitale, Ravenna, 6th century

Electron Beam Lithography (EBL)

A method to pattern resist layers (e.g. PMMA) spun onto a substrate. Features of few tens of nanometers or below are possible to prepare. Limitation is the (slow) patterning time and difficult structuring of large areas (>100 × 100 μ m).

- 1) Electrons from a scanning electron microscope are accelerated and passes through the resist and into the silicon. Secondary electrons are produced.
- 2) These electrons travel through the resist where they break the bonds of the polymer chain.
- 3) When the sample is developed, the now short chained polymers are dissolved, leaving the written pattern behind.

EBL – Examples

Lift-off of sacrificial resist layer is combined with EBL to prepare target micro/nano-structures.

Novotny, van Hults, Nature Photonics, doi: 10.1038/nphoton.2010.237

Nano-Imprint Lithography (NIL)

Method aimed at structuring with <u>low cost</u>, <u>high throughput</u>, and <u>high resolution</u>. Patterns are made by a mechanical deformation of an imprint resist. The imprint resist is typically a polymer that is cured by heat or UV light during the imprinting.

By NIL, wide range of structures can be made:

Anti-reflection coatings

http://www.nilt.com

Self Assembly

Molecules or nanoparticle can self-arrange in well defined structures. Creates a high quality layer of material. Layers are deposited one layer at a time over large areas. Self assembled monolayer (SAM).

Building blocks with different characteristic size:

Thiol SAM

several nm

> 100 nm

S-layer

Colloidal crystal

http://www.mtl.kyoto-

u.ac.jp/english/laboratory/nanoscopic/nanoscopic.ht

Sleytr, FEMS Microbiology Letters (2007), 267 (2), 131–144

N. Vogel, et al., Adv. Funct. Mater., 2011, 21, 3064–3073.

Colloidal Lithography

AUSTRIAN INSTITUTE

Colloidal crystal monolayer is employed as a mask for further fabrication of desired structures.

Colloid mask assembly / Metal deposition / Removal of colloid

N. Vogel et al **Soft Matter**, 2012,**8**, 4044-4067 **DOI:** 10.1039/C1SM06650A

Beyond - Controlled Cell Interaction

It's not only optics - similar techniques exploited for structuring of polymer surfaces enabling control of cell attachment – e.g. orientation of fibroblasts shown below.

B - Summary

- "Top down" approaches for preparation of structures: e-beam lithography, liftoff, NIL.
- "Bottom up" techniques based on self assembly SAM, colloidal crystals, colloidal lithography.
- Can be used to control optical characteristics as well as to define morphologies with different chemical characteristics (cell-surface interactions).

C. OPTICAL SPECTROSCOPIES LIGHT- MATTER INTERACTION

Refractive Index

Parameter that describes interaction of light with matter composed of elements (e.g. atoms) that are $\langle \lambda \rangle$ and exhibit polarizability. By averaging over many atoms that are be polarized by the oscillating electric field.

$$\tilde{n} = n + ik$$

For more details, see Lorenz Lorenz or Clausius-Mossotti theories.

Absorption of Molecules

Absorption of light by molecules is accompanied with their transition from a ground state to excited state (followed by a relaxation). It typically occurs at distinct energies leading to specific bands in absorption spectrum.

E.g. is routinely used for measuring total concentration of proteins – UV absorption spectroscopy.

Absorption of Molecules -Wavelength Spectrum

<u>Electronic lines</u> correspond to a change in the electronic state of an atom or molecule. Typically UV-Vis.

<u>Vibrational lines</u> correspond to changes in the vibrational state of the molecule and are typically found in the infrared region.

<u>Rotational lines</u>, for instance, occur when the rotational state of a molecule is changed. Rotational lines are typically found in the microwave spectral region.

Combination of above can lead to rather complex spectra.

Fluorescence

Luminescence

Process in which a fluorophore (e.g. a dye molecules, quantum dot) absorbs a photon and re-emits it at a higher wavelength. Form of luminescence:

Fluorescence: Lifetime from <10⁻¹⁰ to 10⁻⁷ s (from singlet state).

Phosphorescence: Lifetime from 10^{-5} to $>10^{+3}$ s from (triplet excited state).

Jablonski diagram

- (1) Photo-excitation: from the ground electronic state S₀ creates excited states S₁, (S₂, ..., S_n)
- (2) Internal conversion: Molecules rapidly (10⁻¹⁴ to 10⁻¹¹ s) relax to the lowest vibrational level of S₁.
- (3) Returning to its ground state $S_{0.}$

As the energy hvex is higher than that emitted – <u>Stokes shift</u> occurs.

Fluorophore Characteristics

Quantum yield: Ratio of number of emitted vs. absorbed photons.
Absorption cross-section: Describes the strength of the absorption.
Quenching: Loss of fluorescence signal, interactions between the fluorophore and the local molecular environment (collisions), including other fluorophores (e.g., fluorescence resonant energy transfer FRET).
Photo-bleaching: Only certain number of absorption / emission is possible before destruction of the excited fluorophores occurs.

Abs. and Emission spectrum of Cy5 dye

http://www.olympusmicro.com

Fluorescence Resonant Energy Transfer - FRET

Förster / fluorescence resonant energy transfer: dipole-dipole coupling of two fluorophores which changes the emission spectrum. Efficient at small distances, typically r < 10 nm.

Spectral overlap of absoprtion and emission bands of donor and acceptor chromophores <u>Applications:</u> conformation changes studies, immunoassays, DNA hybridization.

Raman @ IR Spectroscopy

Vibrational spectroscopies - IR and Raman are the most common vibrational spectroscopies for assessing molecular motion and fingerprinting species.

IR and Raman obeys complementary selection rules

- Selection rules dictate which molecular vibrations are probed.
- Some vibrational modes are both IR and Raman active.

Applications

- Commonly used in chemistry, since vibrational information is specific to the chemical bonds and symmetry of molecules. Therefore, it provides a <u>fingerprint</u> by which the molecule can be identified.
- For larger molecules information on <u>conformation</u> <u>changes</u> can be obtained rather than identification of a protein itself.

Raman Spectroscopy

Raman is much weaker effect (often masked by fluorescence) compared to IR.

Selection rules related to symmetry

Rule of thumb: symmetric=Raman active, asymmetric=IR active

DOI: 10.1088/0957-4484/22/27/275716

C - Summary

- Absorption occurs at different spectral ranges for different molecular transitions (between electronic, rotational, and vibration states).
- Fluorescence, Stokes shift, lifetime, quantum yield, FRET.
- Raman and IR spectroscopy, fingerprinting for small molecules. Information on vibration and rotation of molecules.
- Raman scattering is weak and provides a practical tool in connection with amplification – surface-enhanced Raman scattering (SERS)

Scientific Background on the Nobel Prize in Chemistry 2014

D. "Super-resolved" fluorescence microscopy

The <u>Nobel Prize in Chemistry 2014</u> was awarded jointly to <u>Eric</u> <u>Betzig, Stefan W. Hell</u> and <u>William E. Moerner</u> "for the development of super-resolved fluorescence microscopy".

http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2014/advanced-chemistryprize2014.pdf

Optical Microscopy

Abbe diffraction limit: In the far field, the minimum distance between two points that can be distinguished is:

Confocal microscope

How to fight the diffraction limit

Scanning <u>near field</u> optical microscope (SNOM)

https://gerhardt.ch/science.php

Optical meta-materials:

Concept of a lens made of materials with "negative refractive index" allows for perfect imaging.

http://www.intechopen.com/books/plasmonics-principlesand-applications/plasmonic-lenses

STED – Stimulated Emission Depletion

S. Excitation STED S₀ B (b) Saturated depletion of state A 1.0 -· MR-121 Fluorescence signal 0.8 0.6 0.4 0.2 0.0 100 200 300 400 500 600 0

Intensity / MW cm⁻²

(a) STED principle

Current Opinion in Neurobiology

STED – Stimulated Emission Depletion

Switching off fluorophores around a narrow zone in the center allows for localization of the fluorescence emission. From the principle point of view - no limit in resolution.

TRIAN INSTITUTE

STED – Stimulated Emission Depletion

b

Switching off fluorophores around a narrow zone in the center allows for localization of the fluorescence emission. From the principle point of view - no limit in resolution.

Other approaches

. . .

STED imaging showing two color colocalized recordings of nuclear pore complexes in amphibian cells at resolution of 20 nm (red) and ~30 nm (green channel). The imaging is described in Biophys J 105, L01 - L03, (July 2013). Göttfert et al. Other approaches followed based on other implementations of the concept that is based on ability of selectively "switch on and off" fluorescence.

STORM – stochastic optical reconstruction microscopy

PALMS – photo-activated localization microscopy

D - Summary

- Regular optical microscopes can resolve features down the size of several hundreds of nanometers.
- Resolution hindered by wave-nature of light. Abbe diffraction limit.
- STED, PALMS, STROM fluorescence-based techniques that allow breaking the diffraction limit and advance the spatial resolution to sub 100 nm distances when probing with visible light.